Fast Online Incremental Learning with Few Examples For Online Handwritten Character Recognition
نویسندگان
چکیده
An incremental learning strategy for handwritten character recognition is proposed in this paper. The strategy is online and fast, in the sense that any new character class can be instantly learned by the system. The proposed strategy aims at overcoming the problem of lack of training data when introducing a new character class. Synthetic handwritten characters generation is used for this purpose. Our approach uses a Fuzzy Inference System (FIS) as a classifier. Results have shown that a good recognition rate (about 90%) can be achieved using only 3 training examples. And such rate rapidly improves reaching 96% for 10 examples, and 97% for 30 ones.
منابع مشابه
Apprentissage incrémental avec peu de données pour la reconnaissance de caractères manuscrits en-ligne Incremental Learning with Few Data for online Handwritten Character Recognition
and key words
متن کاملبازشناسی برخط حروف مجزای دستنویس فارسی بر اساس تشخیص گروه بدنه اصلی با استفاده از ماشین بردار پشتیبان
In this paper a new method for the online recognition of handwritten Persian characters has been proposed which uses a set of simple features and Support Vector Machine (SVM) as a classifier. The task of preprocessing allows us to equalize feature vectors from different characters. This algorithm is implemented in two steps. In the first step, input character is classified into one of eighteen ...
متن کاملNeural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملOnline Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملWriter-adaptation for on-line handwritten character recognition
We have designed a writer-adaptive character recognition system for on-line characters entered on a touch-terminal. It is based on a Time Delay Neural Network (TDNN) that is rst trained on examples from many writers to recognize digits and uppercase letters. The TDNN without its last layer serves as a preprocessor to an Optimal Hyperplane classi er, that can be easily retrained to peculiar writ...
متن کامل